A Novel Methodology using CT Imaging Biomarkers to Quantify Radiation Sensitivity in the Esophagus with Application to Clinical Trials.

Joshua S Niedzielski, Jinzhong Yang, Francesco Stingo, Zhongxing Liao, Daniel Gomez, Radhe Mohan, Mary Martel, Tina Briere, Laurence Court,


Scientific reports, July 21, 2017


Personalized cancer therapy seeks to tailor treatment to an individual patient’s biology. Therefore, a means to characterize radiosensitivity is necessary. In this study, we investigated radiosensitivity in the normal esophagus using an imaging biomarker of radiation-response and esophageal toxicity, esophageal expansion, as a method to quantify radiosensitivity in 134 non-small-cell lung cancer patients, by using K-Means clustering to group patients based on esophageal radiosensitivity. Patients within the cluster of higher response and lower dose were labelled as radiosensitive. This information was used as a variable in toxicity prediction modelling (lasso logistic regression). The resultant model performance was quantified and compared to toxicity prediction modelling without utilizing radiosensitivity information. The esophageal expansion-response was highly variable between patients, even for similar radiation doses. K-Means clustering was able to identify three patient subgroups of radiosensitivity: radiosensitive, radio-normal, and radioresistant groups. Inclusion of the radiosensitive variable improved lasso logistic regression models compared to model performance without radiosensitivity information. Esophageal radiosensitivity can be quantified using esophageal expansion and K-Means clustering to improve toxicity prediction modelling. Finally, this methodology may be applied in clinical trials to validate pre-treatment biomarkers of esophageal toxicity.


Pubmed Link: 28729729

DOI: 10.1038/s41598-017-05003-x