Translational Genomics: Practical Applications of the Genomic Revolution in Breast Cancer.

Lucy R Yates, Christine Desmedt,

Clinical cancer research : an official journal of the American Association for Cancer Research, June 2, 2017

The genomic revolution has fundamentally changed our perception of breast cancer. It is now apparent from DNA-based massively parallel sequencing data that at the genomic level, every breast cancer is unique and shaped by the mutational processes to which it was exposed during its lifetime. More than 90 breast cancer driver genes have been identified as recurrently mutated, and many occur at low frequency across the breast cancer population. Certain cancer genes are associated with traditionally defined histologic subtypes, but genomic intertumoral heterogeneity exists even between cancers that appear the same under the microscope. Most breast cancers contain subclonal populations, many of which harbor driver alterations, and subclonal structure is typically remodeled over time, across metastasis and as a consequence of treatment interventions. Genomics is deepening our understanding of breast cancer biology, contributing to an accelerated phase of targeted drug development and providing insights into resistance mechanisms. Genomics is also providing tools necessary to deliver personalized cancer medicine, but a number of challenges must still be addressed. Clin Cancer Res; 23(11); 2630-9. ©2017 AACRSee all articles in this CCR Focus section, “Breast Cancer Research: From Base Pairs to Populations.”

©2017 American Association for Cancer Research.

Pubmed Link: 28572257

DOI: 10.1158/1078-0432.CCR-16-2548