Frequency of Aminoglycoside-Modifying Enzymes and ArmA Among Different Sequence Groups of Acinetobacter baumannii in Iran.

Alka Hasani, Vajihe Sheikhalizadeh, Mohammad Ahangarzadeh Rezaee, Mohammad Rahmati-Yamchi, Akbar Hasani, Reza Ghotaslou, Hamid Reza Goli,

Microbial drug resistance (Larchmont, N.Y.), January 18, 2016

We evaluated aminoglycoside resistance in 87 Acinetobacter baumannii strains isolated from four hospitals located in the North West region of Iran and typed them in sequence groups (SGs) using trilocus sequence-based scheme to compare their clonal relationships with international clones. Resistance toward aminoglycosides was assayed by minimum inhibitory concentration (MIC) and presence of aminoglycoside-modifying enzymes (AMEs), and ArmA-encoding genes were evaluated in different SGs. The majority of isolates belonged to SG1 (39%), SG2 (33.3%), and SG3 (12.6%), whereas the remaining ones were assigned to six novel variants of SGs. MIC determination revealed netilmicin as the most and kanamycin as the least active aminoglycosides against all groups. Among the varied SGs, isolates of SG2 showed more susceptibility toward all tested aminoglycosides. APH(3”)-VIa-encoding gene was predominant in SG1 (47%), SG2 (62%), and SG6-9 (100%). However, AAC(3’)-Ia (100%) and ANT(2’)-Ia (90.9%) were the dominant AMEs in SG3. There was significant association between harboring of aminoglycoside resistance genes and specific aminoglycosides: gene encoded by APH(3’)-VIa was allied to resistance against amikacin and kanamycin, whereas ANT(2’)-Ia was related to the resistance toward gentamicin and tobramycin in SG2. In SG1, tobramycin resistance was correlated with harboring of AAC(6’)-Ib. Screening of armA demonstrated the presence of this gene in SG1 (58.8%), SG2 (10.3%), as well as SG3 (9%). Our results revealed definite correlation between the phenotypes and genotypes of aminoglycoside resistance in different clonal lineages of A. baumannii.

Pubmed Link: 26779992